
Object Tracking and Motion Estimation Using
Particle Swarm Optimization

Yateen Kedare1, Rohit Thakare2, Jayesh Raghuwanshi3, Vedant Deokar4

Department of Computer Science, Smt. Kashibai Navale College of Engineering,
Savitribai Phule Pune Pniversity, Pune, India

Abstract— In order to robustly track any random object we
usually require lots of processing power. Tracking objects
from our day to day computational devices may introduce a
lag in the tracking system. In order to speed up the process we
are using Particle swarm optimization for tracking. This
method allows us to track objects with minimal hardware
requirements. Output from Particle Swarm Optimization
usually contains little noise. In order to eliminate this noise
and estimation the trajectory of the object we use Kalman
filter.
Keywords— PSO, Kalman Filter, Object tracking, Motion
Estimation.

I. INTRODUCTION

Conventional methods of object detection and tracking
require lots of processing power. Even the best of the
hardware require lots of time in order to process the visual
data when it comes to object following. Object detection
techniques give robust outputs. Such detection algorithms if
used repeatedly for tracking the object will consume lot of
CPU time and hence will introduce a lag in the system.

In this project, in order to deal with the object tracking
problem, we are using particle swamp optimization
technique along with Kalman filters in order to predict the
path of the object and remove the noise in the output.

The focus of this project is to enable our day to day
computational devices such as laptops, hand held devices
and embedded devices to track objects robustly without any
lag. Empowering embedded devices to process visual data
efficiently can be of great use in field of Robotics and
Automation.

II. RELATED WORK

Particle Swarm Optimization was first cited in [1] where
general idea of PSO was explained as an optimization
algorithm to expedite searching. In [2] Histograms were
used in order to track objects. Every frame was divided in a
grid and histogram was calculated for each of the element
in the grid and result was computed by comparing the
fitness function value between target object histogram and
grid elements. In [3] PSO was used for object detection in
a given search space and grey level histograms were used
for object tracking. In [4], PSO was used to improve the
performance of face recognition by optimizing elastic
bunch graph matching technique.

III. PARTICLE SWARM OPTIMIZATION

PSO is an optimization algorithm which originates from
a swarm of birds trying to search for food. When birds are
searching for food (goal state) in a swarm all birds move
around in a random direction. Every bird looks out for food

by itself (local best) and also keeps a tap on other birds to
see whether anyone one of them has found food (global
best). When food is spotted by some bird in the swarm
every bird changes its position according to the new global
best.

In order to track the object using the above method we
create multiple particles randomly in the search space.
Histogram of the target object to be tracked is considered as
the goal state. Each particle computes histogram of the
selected search space and compares it with the goal state
histogram in order to find out the fitness value of any
iteration for the given particle. Global best is the best value
of fitness function achieved in iteration. Local best value is
the best position achieved by the particle so far. In order to
compute fitness function, Bhattacharyya Coefficient can be
used [6].

,ሻݐሺܪ൫ܥܤ ,ሺܪ ݐ 1ሻ൯ ൌ 	ඥܪ௫ݐ, ,௫ሺܪ ݐ 1ሻ
௫∈

Where H(t) represents the histogram of target object,
H(pi,t+1) is the histogram of particle i and X denotes the
distribution domain.

By using the above equation the distance between two
histograms can be calculated as [7]:

,ሻݐሺܪ൫ܦ ,ሺܪ ݐ 1ሻ൯ ൌ 	ට1 െ ,ሻݐሺܪ൫ܥܤ ,ሺܪ ݐ 1ሻ൯

Thus the fitness function for every particle i should be
inversely proportional to the distance between Hx (pi ,t +1)
and Hx (t):

,ሺܨ ݐ 1ሻ ൌ ,ሻݐሺܪ൫ܦ/1 ,ሺܪ ݐ 1ሻ൯
The position and velocity of the particles are updated

according to the following equations at any iteration:
௧ାଵݒ
ௗ ൌ .ݓ ௧ݒ

ௗ 	ܿଵ. ߮ଵ൫௧
ௗ െ	ݔ௧

ௗ൯ 	ܿଶ. ߮ଶ൫௧
ௗ െ

௧ݔ	
ௗ൯

௧ାଵݔ
ௗ ൌ 	 ௧ݔ

ௗ 	ݒ௧ାଵ
ௗ

Where i represent the particles in dimension d. vt is the
current velocity of the particle and vt+1 is the new velocity.
w, c1, c2 are constant weights. φ1 and φ2 are randomly
generated variables between (0,1) interval.	௧

ௗ is the local
best value achieved by the ith particle in dimension d and
௧
ௗ is the global best fitness value achieved in that iteration.
Object tracking using PSO can be termed as a four

variable problem which contains ∆x, ∆y, ∆h and ∆w, where
(x,y) is the position of the particle in xy plane, ∆h is change
in height and ∆w is change in width of the output bounding
box. Above equations of PSO can be applied to all these
four variables for the result.

Yateen Kedare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 777-779

www.ijcsit.com 777

IV. KALMAN FILTER

The Kalman Filter algorithm is an asymptotic state
estimator for multiple dimensions. It predicts the future
state of the system based on the previous states. We use this
algorithm in order to filter the output generated by PSO and
also to estimate the trajectory of the object.

Kalman filter can be used for filtering of multi-
dimensional data. In our case, we get data from two
dimensions, i.e. x and y. This method can be extended and
applied to height and width parameters of PSO for further
smoothening of output bounding box.

Since we want to predict the data in two dimensions i.e. x
and y our standard models of kalman filter would be as
follows.

A. State Update Model

The State update model for 2D kalman filter will contain
components of position x, y and velocity	̀ݔ and	̀ݕ. This can
be represented as:

௧ഥݔ ൌ ௧ିଵݔܣ ௧ߤܤ ௫ܧ

Where ݔ௧ഥ denotes estimate of the new state, ݔ௧ିଵ is the

data from previous state. A and B are coefficient matrices.
 .௫ is the error varianceܧ ௧is the control input variable andߤ

This can be represented in the matrix form as:

൦

ݔ
ݕ
ݔ̀
ݕ̀

൪ ൌ 	

1 0 ܶ 0
0
0
0

1
0
0

0
1
0

ܶ
0
1

 ൦

ݔ
ݕ
ݔ̀
ݕ̀

൪ +

ۏ
ێ
ێ
ێ
ۍ
்మ

ଶ
்మ

ଶ
ܶ
ܶ ے
ۑ
ۑ
ۑ
ې

 .௫ܧ + ௧ߤ .

B. Measurement Update model

Measurement update model is used to change our
parameters of current model when we get new data. In this
case we’ll be measuring two parameters i.e. x position and y
position.
௧ഥݖ ൌ ௧ഥݔܥ
Where ݖ௧	is the measurement and ݔ௧ഥ is the current state

update model. C is our measurement function which we
apply to the state estimate in order to get our expected new
measurement.

We can represent measurement function matrix C as:

ܥ ൌ 	 ቂ1 0	 0 0
0 1 0 0

ቃ

Thus we can apply our state update model and

measurement update model as described in [8].

C. Error Variance

We can define the measurement error as:

௭ܧ ൌ ቈ
௫ଶߪ 0
0 ௬ଶߪ

Where σx is variance in x and σy is the variance measure

in y.

Error in the input to the system or the process can be
described as:

௫ܧ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
்ర

ସ
0

்య

ଶ
0

0
்య

ଶ
0

்ర

ସ
0
்య

ଶ

0
ܶଶ

0

்య

ଶ
0
ܶଶے
ۑ
ۑ
ۑ
ۑ
ې

V. PSO-KALMAN ALGORITHM SUMMARY

The PSO-Kalman algorithm for object tracking and
motion estimation can be summarised by the following
pseudo code.

While(newImage is available) {
 If(target object histogram not valid) {
 Select target on the image frame;
 Update target histogram;
 }
 Else {
 If(particles not initialised) {
 Initialise particles;
 }
 Else {
 For (each particle) {
 Calculate fitness;
 Update local best;
 }
 Compute Global best;
 For(each particle) {
 Update position;
 Update velocity;
 }
 Apply kalman filter on the best

 particle;
 Display the results of kalman

filter;
 }
 }
}

VI. EXPERIMENTAL RESULTS

In order to test the efficiency and robustness the above
algorithm was implemented in openCV 3.0 with C++. It
was tested under dynamic conditions on various systems
with varying OS platforms. Some of the results are depicted
in the figures below.

Fig. 1 Example of PSO-Kalman tracking.

Yateen Kedare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 777-779

www.ijcsit.com 778

We can see that the PSO-Kalman based tracking
algorithm is rotation invariant from Fig. 1. It shows the
result of an object rotated by 180o. Thus the object in the
image frames need not be in the same position as the given
goal state.

Fig. 2. Object moving outside the image frame.

In Fig. 2(a) the object moves out of the frame. The

algorithm tracks the object till it has completely gone
outside the frame. Once the object has gone outside the
frame the particles get scattered due because no definite
goal state has been found out by any particle. In Fig. 2(b)
when the object returns in the image frame global best
value is updated and the all the particles start converging on
the object.

Fig. 3. Particles in the search space.

In Fig. 3 we can see the particles randomly distributed
around the object. These particles move along with the
object according to the global best and the local best values
of fitness.

In Fig. 1, Fig. 2 and Fig. 3 kalman filter was applied in
order to smoothen out the output generated by the PSO
algorithm. Kalman filter also estimates the path of the
object whose co-ordinates can be easily retrieved from the
code.

VII. CONCLUSIONS

The experimental result of the proposed algorithm gives
robust output. This system is rotation invariant and hence
tracks the objects irrespective of its orientation.

Since this system is highly optimized and platform
independent it can be executed on any embedded system.

Multiple target object histograms can be incorporated in
the proposed algorithm in order to track multiple objects in
real time. Since the proposed algorithm is an application of
an optimization technique, the system does not introduce
any lag.

ACKNOWLEDGMENT

We would like to take this opportunity to thank Prof.
Vijay Ghule for giving us all the help and guidance we
needed. We are really grateful to him for his kind support.
His valuable suggestions were very helpful.

REFERENCES
[1] Kennedy and R.C. Eberhart, Particle Swarm Optimization, in

Proceedings of IEEE International Conference on Neural Networks,
1942-1948, 1995.

[2] M. Mason, Z. Duric , Using Histograms to Detect and Track
Objects, in Color Video, in Proceedings of IEEE30th Applied
Imagery Pattern Recognition Workshop, ISBN 0-7695-1245-3.

[3] Chen-Chien Hsu, Guo-Tang Dai, Multiple Object Tracking using
Particle Swarm Optimization, in International Journal of Electrical,
Computer, Energetic, Electronic and Communication Engineering
Vol:6, No:8, 2012.

[4] T. Kailath, The Divergence and Bhattacharyya Distance Measures,
in Signal Selection, IEEE Trans. Commune. Tech., COM-15:52-60,
1967.

[5] Yuhua Zheng and Yan Meng, Object Detection and Tracking using
Bayes-Constrained Particle Swarm Optimization, in Computer
Vision Research Progress, ISBN 978-1-60021-992-4.

[6] X. Xiao, E.R. Dow, R.C. Eberhart, Z. Ben miled, and R.J. Oppelt,
Gene Clustering using Self-Organizing Maps and Particle Swarm
Optimization, in Proceedings of the Second IEEE International
Workshop on High Performance Computational Biology, pp. 10
2003.

[7] Y. Owechko, S. Medasani, and N. Srinivasa, "Classifier Swarms for
Human Detection in Infrared Imagery,” in 2004 Conference on
Computer Vision and Pattern Recognition Workshop (CVPRW’04),
Vol. 8, pp. 121, 2004.

[8] R. E. Kalman, A new approach to linear filtering and prediction
problems, J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960.

Yateen Kedare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 777-779

www.ijcsit.com 779

